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The modulation of circularly polarized Alfvén waves due to quasitransverse perturbations is ad-
dressed, and the nonlinear dynamics simulated numerically. In some instances, radial collapse (fila-
mentation) of Alfvén waves can be arrested by the magnetosonic waves stirred by the ponderomotive
force. Such waves may, however, develop sharp fronts leading to strong hydrodynamic effects.
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I. INTRODUCTION

The dynamics of a plasma subject to an ambient mag-
netic field is the object of a great deal of interest in var-
ious astrophysical and geophysical contexts such as the
interstellar medium or the solar wind. Because of the
consequences for the transport properties and the energy
budget, an important question is whether the dynam-
ics in such media is dominated by the propagation of
nonlinear Alfvén waves (together with negligible hydro-
dynamic effects) or, if at the opposite, a truly magneto-
hydrodynamic (MHD) compressible turbulence can de-
velop. In the interstellar medium for example, supersonic
(and sub-Alfvénic) motions are observed at the scale of
molecular clouds but the existence of a strong compress-
ible turbulence where a significant dissipation occurs in
shocks, could hardly be explained by the presently known
mechanisms of energy injection [1]. Furthermore, the
question arises of the origin of large density fluctuations
at the scale of diffuse interstellar clouds.

In the earth bow shock, there is experimental evidence
of the presence of almost circularly polarized Alfvén
waves. Important density fluctuations are also observed,
shifted with respect to the maximum wave intensity.
Such fluctuations seem to originate from the pondero-
motive force due to modulationally unstable wave trains.
Furthermore, as observed by Spangler et al. [2], the am-
plitude of the fluctuations in the ambient field-aligned
component of the Alfvén wave, appear to be larger than
could be attributed to oblique propagation alone, given
the constraints on the propagation angle. These authors
suggest that the most likely explanation for the such rel-
atively large fluctuations is that they arise as the conse-
quence of transverse modulation.

As a first step towards the understanding of the ba-
sic nonlinear phenomena entering these problems, we
study in this paper the three-dimensional modulational
stability of Alfvén waves, propagating parallel to the
ambient magnetic field, when coupled to low-frequency
magnetosonic waves. In the weakly nonlinear regime,
the interaction of a high-frequency to a low-frequency
acoustic-type wave is usually governed by the Zakharov-
Rubenchik equations [3]. In the specific case where the
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high-frequency wave is an Alfvén wave, the anisotropy of
the system due to the ambient magnetic field, together
with the presence of an additional (slow magnetosonic)
wave, leads to a modified system of amplitude equations
derived in Ref. [4]. These equations are the starting point
of this paper. Of particular interest is the possible devel-
opment of wave collapse and fronts. Although the valid-
ity of the amplitude equations breaks down near such sin-
gularities, these structures correspond to regions where
significant heating (not included in the equations) may
take place.

II. ENVELOPE EQUATIONS FOR ALFVEN
AND MAGNETOSONIC WAVES

A plasma where electron inertia together with ion-
neutral friction are neglected and electric quasineutrality
is assumed, can be described by the one-fluid equations
where the Hall effect is retained (dispersive MHD)

(2.1)
(2.2)

Oip + V. (pu) =0,
p(du+u-Vu) = -EVp7 + (V x b) x b,

ab—V x (uxb)=—£Vx [-};(be) xb], (2.3)
V.b=0. (2.4)

The parameter 3 is the square ratio of the velocities of
sonic and Alfvén waves, v denotes the polytropic gas con-
stant and R; the nondimensional gyromagnetic frequency
of the iomns.

Equations (2.1)—(2.4) admit exact solutions in the form
of circularly polarized Alfvén waves whose amplitude is
here assumed to be small. A modulation analysis start-
ing directly from these equations is feasible but, when
the wavelength of the carrying Alfvén wave is large com-
pared to the gyromagnetic radius of the ions, it is easier
to start from a multidimensional version of the derivative
nonlinear Schrédinger (DNLS) equation [5], in which the
coupling to the magnetosonic waves (relevant when deal-
ing with multidimensional Alfvén wave trains), has been
included [4]. A derivation of the modulation equations
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in this context, is also presented in Ref. [4], using a sys-
tematic multiple-scale method. They read

1.(8TB+U—96xB)+k(V+B+§)B
1 7’ 2 2

1 1
.1
drp+ —8xV =0, (2.6)
€p
2y O [ g IBE
6TV eﬂaxv = o [(1—,3)/)—,3(1— 2

1: * *
+Zk(—1——ﬂ) (B*A.B—-BA,B"),

(2.7)

R;

Here B denotes the (complex) envelope of the transverse
magnetic field and @ the slowly varying component (re-
ferred to as the mean value) of the longitudinal magnetic
field. The quantities V and p are defined in terms of the
mean longitudinal velocity u, and the mean density p of
the fluid by V = @—p+u, and p = p—a. The wave num-
ber of the carrying Alfvén wave is ek (with € <« 1) and
the group velocity (in a reference frame moving at the
phase velocity) is vg = —k/R;. The other small parame-
ter p measures the wave amplitude and thus the inverse
scale of the modulation.

Equations (2.5)—(2.8) appear as a uniform descrip-
tion, obtained by matching two asymptotic regimes re-
lated to the ratio of typical transverse and longitudinal
scales. In the “inner” region (perturbations quasitrans-
verse to the Alfvén wave propagation) where the full dy-
namics of density waves is retained, the mean flow term
ZF(T’.:E—) (B*A, B — BA, B*) in Eq. (2.7), can in fact
be replaced by Or|B|? as seen from Eq. (3.43) of Ref.
[4]. In the “outer” region, this term is subdominant. It
vanishes exactly for purely longitudinal perturbations, a
case where we recover the equations given in Ref. [6]. Ina
uniform formulation, it is thus legitimate to replace the
mean flow term by 8r|B|? in both regions. As shown
later, such a replacement introduces subdominant cor-
rections which restore the Hamiltonian character of the
problem. Furthermore, the term —Bx x4 in (2.8), which
is relevant only in the outer domam, results from an “adi-
abatic” approximation, usual in the context of Davey-
Stewartson equations. As stressed in Ref. [7], it may
however be useful, especially when Eq. (2.8) is of hyper-
bolic type (k < 0), to retain in this equation a derivative
with respect to a faster time scale. In the reference frame
used here, this consists in replacing 2udx xa@ by 2u0xTa
in (2.8).

In this paper, we are mainly interested in quasitrans-
verse perturbations (filamentation instability (8], [9]). It

2
%axxﬁ-l‘-A_L(p-l—(l-{',B)aﬁ-lB' )=0. (2.8)

is thus convenient to use rescaled variables X = uR; X,
(Y,2) = 2|k|\/|1 —B|(Y,Z) and T = |k|T, adapted to
slow variations in the longitudinal direction, that still re-
tain the effect of the group velocity. After dropping the
tilde, hat, and bar symbols and defining = €|k|/R; and

€ = py/R;/2|k|, we get

i(9rB — kOxB) — k (V +24 ) B+okALB

—£20xxB =0, (2.9)
ndrp + OxV =0, (2.10)

ndrV — 20xV — (1 — B)dxp + Bdxa
= (ndr — 30x)|BJ?, (2.11)

|BP
saXTa+|1*ﬂ|AL(ﬂp+(1+ma+ 2) 0,
(2.12)

with k = sgn(k) and o = sgn(1 — ). In this formulation,
the modulation equations admit an Hamiltonian

H= /{0|VLB|2 _ r€2|0x B’} d°r
+ [{GUe- 10+ V2 + 1+ 8)a + 260

+(a+ p)|B|2]}d3r (2.13)

When linearized, Eqs. (2.10)—(2.12) describe three
magnetosonic waves: the ion-acoustic waves whose phase
velocities identify to —14+/3, and the magnetosonic wave
which propagates with the same velocity as the Alfvén
wave. Related equations were derived in Ref. [10] for
ion-cyclotron waves, coupled to the four magnetosonic
waves. In the present asymptotics, where the wavelength
of the carrying wave is large compared to the ion gy-
romagnetic radius, the magnetosonic wave propagating
backward with the Alfvén wave velocity is subdominant
at the retained scales.

The modulation Eqgs. (2.9)—(2.12) couple various ef-
fects that deserve a separate investigation before a com-
prehensive analysis of the Alfvén wave problem be carried
out. For example, when ok = +1, the second order spa-
tial operator in Eq. (2.9) is hyperbolic. In this case, even
in the simpler context of the nonlinear Schrédinger equa-
tion, new phenomena like splitting can occur [11]. When
sonic waves are treated in the adiabatic limit (valid for
nonquasitransverse modulations), Eqgs. (2.9)-(2.12) re-
duce to a Davey-Stewartson-type equation [15]. Forma-
tion of singularities for Davey-Stewartson equations is
discussed in Ref. [12] when the equation for the poten-
tial is of elliptic type, the other case being mostly open
[13], [14]. After presenting in the next section a linear
modulational stability analysis of a plane Alfvén wave,
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we concentrate on the nonlinear dynamics in the weak
dispersion limit.

III. MODULATIONAL STABILITY

Equations (2.9)—(2.12) admit solutions of the form
p =V =a =0and B = by. In order to study
their modulational stability, we write the perturbed field
B = bo(1 + b)e*®. Linearizing the system and consid-
ering perturbations p, V, a, b, and ¢ proportional to
e!(Kr—9T) with K = (K., K ), we obtain the dispersion
relation (K, = |K_|)

A B 0 0 0
-B A 5 K 5
0 0 —nQ K. 0 |=0,
C 0 —-(1-B)K. —-(n+2K.) BK.
D 0 —op(1-pB)K? 0 E

where A = —(i2 + ikK,), B = £2K2 — oxK3, C
|bo|?(Kz + 2782), D = —|bo|?0(1 — B)K? and E
£2QK, — o(1 — B?)K3. We computed numerically the
roots of this fifth-order polynomial in Q for various val-
ues of the parameters. Two limiting cases are of interest,
according to the ratio £/7.

We first address the regime <« €. Figure 1 displays
the contours of the growth rate of the most unstable

mode as a function of the angle § = arctan % and of 3,
for £ = 0.5 and 7 = 10~2. On the left-hand side, the pic-

x=+1

0 5
FIG. 1. Contours of the growth rate of the most unstable

mode as a function of the direction § = arctan I:(—i' of the mod-
ulation wave number, and of the parameter 8. (a) Right-hand
polarized Alfvén wave (x < 0) with 8 > 1; (b) left-hand po-
larized Alfvén wave (k > 0) with 8 > 1; (c) same polarization

as (a) with 8 < 1; (d) same polarization as (b) with 8 < 1.

tures correspond to kK = —1 and on the right-hand side to
& = +1. On the top, they refer to the range 1.1 < 8 < 50,
and on the bottom to 0.01 < 8 < 0.9. The neighborhood
of B = 1 which deserves a special treatment, is avoided.
Dotted lines delimit regions where €2 is real (no instabil-
ity). The boundary layer obtained for 3 > 1 and @ close
to /2 has a thickness that decreases with n and corre-
sponds to the transverse instability mentioned in Ref. [4].
For moderate values of 3, the smallest critical stability
angle appears to be 3 independent for ok = +1 [Figs.
1(a) and (d)]. In the other pictures, the curvature of the
limiting lines at small angle is due to the nonadiabatic
correction (Oxra instead of dxxa) in Eq. (2.12). This
line, which for any value of 3 is pushed towards smaller
angles as § is decreased, was the only stability transition
(except for purely transverse perturbations) occurring in
the adiabatic limit considered in Ref. [4]. Here new re-
gions are delimited. The additional curve in Fig. 1(a)
is pushed towards larger B and smaller angles as 7 de-
creases. It moves towards smaller B as £ diminishes. In
contrast, the largest transition angle remains mostly un-
changed. In both Figs. 1(b) and 1(c), the unstable range
is pushed towards smaller angles as £ is decreased. An
interesting effect is observed for o = —1 and « = +1 [Fig.
1(b)] where, as 7 is decreased, the left-hand limiting curve
straightens towards the curve obtained in the adiabatic
limit corresponding to the replacement of dx xa by dxra
in Eq. (2.12). For both Figs. 1(b) and 1(c), the right-
hand-side delimiting curve also has a limit when n — 0.
Furthermore, if the perturbation wave number K is also
decreased, the unstable region extends to larger angles,
confining the stability region to another boundary layer.

In the other limit (§ < 7), the stability diagrams
greatly simplify. For a given value of 5, the stability
only depends on 6, k, and 0. For 0 = k = —1, three
regions are encountered when 6 is increased, namely an
instable one, a stable one, and the already mentioned
unstable boundary layer near § = 7/2. For 0 = —1 and
K = +1, the system is unstable in the boundary layer
only. For o = +1 and k = —1, it is always stable, while
for 0 = kK = +1 the stability diagram is similar to that of
Fig. 1(d). In all the cases, the instability ranges (except
the boundary layer about 8 = 7/2) are pushed to smaller
angles when 7 is decreased.

IV. SMALL DISPERSION LIMIT

The limit consisting in neglecting the terms propor-
tional to £ in Egs. (2.9)—(2.12), corresponds to a situa-
tion where the modulation is at a much larger scale in
the longitudinal than in the transverse directions. This
leads to neglect the dispersion in Eq. (2.9) and to solve
Eq. (2.12) in the form a = fﬁ(%ﬂ +Bp), up to a possi-
ble function of X and T that can be absorbed in a phase
factor when a is substituted in Eq. (2.9). The equations
then reduce to the inner limit (3.40)—(3.43) of Ref. [4].
Diagonalizing the linear part of the wave equations (as-
suming 3 # 0), and using a reference frame moving with
the Alfvén group velocity, we get
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i0rB — (|B|* + W, + W2)B+0A, B =0,
ndrW; + (Ai + nK)0x W; = p;0x|B|?

(4.1)
(i=1,2), (4.2)

with
V =B+ A2i/\1()\lwl+,\2wz), (4.3)
1
p= m(W1+Wz), (4.4)
’\1=_1_1/1—ffﬁ’ (4.5)
’\2:"”1/1_4%’ (4.6)
I T 1
D W ( 1+2(1+ﬂ))
46+ 3 41+ pB)
<(etarig) (55) @9
__ 1, 1
b= —x ( 2t 2(1+,3))
46 +3 4(1+ B)
X(A1+2(1+m)(4ﬂ+3) L (8

Note that we took x = 1 in Eq. (4.1), since the case k =
—1 is recovered by replacing B by its complex conjugate.
Furthermore, it is easily checked that

By 1=,

NN, (4.9)

a condition which reflects the degeneracy observed in Ref.
[15] when £ = 7 = 0. The introduction of the W; and
W, functions in Eq. (4.3) also splits the ponderomotive
force (ndr — 30x)|B|? into a temporal contribution in-
cluded in the potential of the envelope equation and a
spatial contribution which stirs magnetosonic waves (see
also Ref. [17] for a discussion of the relative importance
of the two effects).

The variation with 3 of the coefficients A; and p; (z =
1,2) defined in (4.5)—(4.8) and entering Egs. (4.1) and
(4.2), is displayed in Fig. 2. We observe that |uz| de-
creases rapidly when ( increases. For example, pu; =
—8.3x1073 for 3 = 0.5and s = —4.6x10~% for B = 1.5.
Practically, as soon as 3 exceeds a few tenths (still avoid-
ing the neighborhood of 3 = 1), we can discard the wave
W, and take p; = —A;. Only one parameter €2 = 7/u;
(assumed to be small) then remains explicitly in the equa-
tions. A second parameter is in fact provided by the ratio
of the longitudinal to the transverse scales of the initial
conditions. It is equivalent to fix these scales at order
unity and, by a rescaling of the longitudinal coordinate,
to replace Eqgs. (4.1) and (4.2) by

i0rB — (|B|> + W)B+ oA, B =0, (4.10)

€0rW — cOxW = 0x|B|? , (4.11)
where ¢ = (1 — e2k). Note that €; can be chosen at
will, the limit of purely transverse perturbations being
recovered as €; tends to infinity.

A linear modulational stability analysis on Eqs. (4.10)
and (4.11), leads to the following dispersion relation:

€1
cos 6

=2
W3+ (1 — epr)w? + 2520

2 (20bo|* — K?sin® f)w
cos

—sin® @[K?sin® @ — ezx(K % sin® 6 — 20]bo|?)] = 0,
(4.12)

where the same notations as in Sec. II are used and w =
Q/K. In Fig. 3, we display the dominant growth rate
(imaginary part of w) as a function of  for 0 = k = —1,
€; = 0.05, and ¢ = 0.01. The thickness of the unsta-
ble boundary layer at § = 7/2 is independent of €5 and
roughly proportional to 1/e;. The other instability re-
gion spreads towards larger angles as €; increases or €;
decreases. For 0 = —1 and k = +1, the instability is
restricted to a boundary layer close to § = w/2. The
parameter < thus plays an important role, although it
appears multiplied by the small quantity ;. Indeed, for
€2 = 0, the nonlinear term disappears in the adiabatic
limit. According to its sign, the e;x correction in Eq.
(4.11), which originates from the difference between the
group and the phase velocity of the Alfvén wave, corre-
sponds to a focusing or defocusing nonlinearity.

For 0 = +1, the stability results are similar to those
discussed above when ok is the same, except that no
boundary layer arises near § = w/2. We conclude that
in the limit £ — 0, the stability properties of Egs. (4.10)

-0.5
-
L

1.5
T
P S SRR

N L 1L L
‘ 0.5 1 1.5
B
FIG. 2. Variation with B8 of the coefficients A,

(dashed-dotted line), A2 (dotted line), p; (solid line) and p2
(dashed line) defined in Egs. (4.5)-(4.8).
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FIG. 3. Dominant growth rate as a function of 6 for a
right-hand carrying Alfvén wave (x < 0) and 8 > 1.

and (4.11) identify qualitatively with those of the com-
plete system (2.9)—(2.12).

V. NONLINEAR DYNAMICS IN THE
DISPERSIONLESS LIMIT

This section is devoted to the numerical integration of
Egs. (4.1) and (4.2) when 0 = —1. The case 0 = +1
is essentially defocusing. In order to ensure accuracy, we
use the anisotropic dynamic rescaling method developed
in the context of the nonlinear Schrédinger equation [16].
For simplicity, we concentrate on solutions which are ax-
isymmetric in the transverse variables. We write

B(E,y, Z,t) S(t)q’(gl,ga ) (51)
Wi(xay?zvt) Sz(t)¢t(£1,£,7—) ('L = 192) (52)
in terms of the stretched variables & = %(t), ¢E =

1:’::;;:2 y T = f; g;ﬁdu, where the scaling factors s,(t),

s(t), S(t) will be prescribed later. A translation of the
origin of the coordinates (especially in the z direction)
and a rotation of the coordinate axes could be included
in this formalism, but do not appear to be necessary in
the present context. Substituting in Eqs. (4.1) and (4.2),
we get (i =1,2)

1431
1 Sr 52
; (3T‘I’+a£35\11+a1§1651\11 - ?‘I’ —A_]_\I’
+(|¥? + ¢1 + ¢2)¥ =0, (5.3)

Sr
Ui (&-dh’ + al0¢; + a1610¢, ¢; — 2?45:')

52 52 2
+(Xi + k) —0, b = —pi0g, |¥]°, (5.4)
81 S1
where

a=-0,Inls|, a1=-0 lnls. (5.5)

In order to keeps all the terms of the same order in the
rescaled equations, we require

2 1 3

S == .6
s2 s S2 (5.6)
We also define the normalized scaling factors
252 152
2= 2-_—. 5.7
l 3 $2 ’ 1 3 $1 ( )

Furthermore, we prescribe that in the rescaled variables,
the magnetic field keep a constant scale in both the lon-
gitudinal and transverse directions, in the form

J@upredgdey | [SuPredgde, o
J 1% |?Pédedé, ’ N RLTT3 )
which corresponds to (r = /2 + 22)
2 J =%|B|*Prdrdx 2ol J r%|B|**rdrdz
2 = U i Wb

[|B|?Prdrdz ° " 2 [|B|*Prdrdz

(5.9)

In our numerical simulations, we use p = 3. Differentiat-
ing (5.9) with respect to time and using Egs. (5.3) and
(5.4), we obtain

i lzf(l — €)S(ALTY)| PP DedEds,

, 5.10
J 1®|?PEdede, (5.10)

12 J1- J(AL‘I"I’)|‘I’|2(p_1)§d5d£1 (5.11)

J | ®|?rédede,
Furthermore, we easily check that, from (5.6),
% (12a + llal) (5.12)

and from (5.7)

1 dl2 2 ai ;o
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1 dlz ay
Ed-fl =2 (al2 + 31';‘) +ay, (5.14)
which close the system.

The coupled equations (5.3) and (5.4), (5.12)—(5.14)
are solved numerically by a second-order finite difference
method. The £ variable which extends from 0 to oo, is
mapped to a finite interval using an homographic map-
ping, while the ¢; variable is restricted to the interval
[—30,10]. We use a resolution of 400 grid points in the
z direction and 200 in the 7 dnirecztion. The initial con-
ditions are fixed as B = 4e™" ~® and W; = W, = 0.
As the integration proceeds, the original fields B(z,r,t),
Wi(z,r,t), and Wy(z,r,t) are reconstructed from the
scaling factors and the rescaled profiles.

We checked that the wave W, is indeed negligible for
B > 1, its amplitude remaining smaller than the other
wave by a factor of order pa/pi. It is thus convenient
to describe the results of the simulations in terms of the
parameters ¢€; and € entering Egs. (4.10) and (4.11) and
to write W; = W.

Figure 4 displays the longitudinal variation of |B| and
W at r = 0 and various times, for ¢; = 0.11 and
kea = —1.7 x 1073, At early times when W is negli-
gible, we observe the onset of radial focusing, leading to
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a moderate growth of the maximum of |B|. Meanwhile,
W develops a mostly antisymmetric profile [Fig. 4(a)].
We then observe a shift of the focus in the negative z
direction towards which the wave propagates. Later on,
as seen in Fig. 4(b), the initial z symmetry of |B| is
broken and W displays a sharp front. The maximum of
| B| then starts decreasing and W develops a symmetric
component [Fig. 4(c)]. At this time, the |B| peak splits
and ejects a fraction of its energy towards the negative
z. The radial L, norm then becomes subcritical and the
collapse is arrested. While the magnetic field envelope
defocuses and spreads in the radial direction, an intense
sonic wave displaying a sharp front propagates away from
the magnetic pulse [Figs. 4(d)]. Reminding that in the
present asymptotics (such as for the DNLS equation), the
amplitude of the sonic wave is second-order compared to
that of the transverse magnetic field, we find that, even
though the amplitude of |B| has decreased, a strong am-
plification of W may question this scaling.

In order to address the effect of the longitudinal scale
(in the z direction) of the initial modulation, we vary
the parameter €;. When we decrease this scale by taking
€1 = 3.7 x 10~2, we still observe an inhibition of the col-
lapse but the evolution is different. At early times [Fig.
5(a)], W still displays the antisymmetry of the spatial

IB]

[B]

t=0.0852 t=0.1324
A 5
3 4
3
2 2
1 1
+ X + X
-8 -6 -4 -2 2 -10 -8 -6 -4 -2
w W
5 0
0 0
o
X
-8 -6 -4 -2 2 -10 -8 -6 -4 -2 2

FIG. 4. Longitudinal variation of the
b Alfvén wave envelope |B| and of the sonic

wave W, given by Eqgs. (4.1) and (4.2), for
€, = 0.11 and kex = —1.7x 1073, at r =0

-10 -8 -6 -4 -2 = 2

-10 -8 -6 -4 -2 2
-0
- c

and various times.
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contribution of the ponderomotive force, but rapidly, the
positive and negative parts separate. The positive part
moves towards negative , while the negative one stays at
the location of the |B| pulse and tends to relax to its adi-
abatic limit —|B|?, resulting in a strong inhibition of the
focusing [Fig. 5(b)]. Figures 5(c) and 5(d) display at the
same times as Figs. 5(a) and 5(b), respectively, the ra-
dial profile of |[B| and W at the point of the = axis where
| B| is maximum. We observe that both the longitudinal
and transverse scales had not significantly changed since
the initial time.

On the other hand, if we consider a longitudinal modu-
lation at a much larger scale, taking €; = 0.56, the behav-
ior is radically different and far from the adiabatic limit.
In this case, the collapse is not arrested. For slightly neg-
ative z, both the magnetic field envelope and the sonic
wave become very intense and a sharp sonic front devel-
ops [Fig. 6(a)]. Figure 6(b) displays the radial profile of
|B| and |W| at locations on the z axis where their am-
plitudes are maximum. Comparing with Fig. 6(a), it is
clear that although the characteristic scale in the = direc-
tion has slightly decreased, it remains much larger than
the radial scale, indicating the formation of a filament
with a finite longitudinal extent.

We now investigate the influence of the parameter ¢,

measuring the ratio between the Alfvén wavelength and
the ion gyromagnetic radius. Here we fix ¢; = 0.11 but
for an easier understanding of the dynamics, we do not
restrict €, to the very small values required by the DNLS
asymptotics. For e2x = —0.41 or eoxk = —0.69, the col-
lapse is arrested but the behavior of W is different from
the case where €5 is much smaller. The positive and neg-
ative parts of W separate, a positive bump being ejected
towards the negative z and a negative bump staying at
the pulse location. For e2x = —1.5, the W field is not
large enough to arrest the collapse and the focusing goes
on, while the wave takes a symmetric form at the location
of the B peak as shown in Fig. 7. In this case, the lon-
gitudinal scale has slightly increased. If now, changing
the sign of x, we take eax = 0.72, focusing takes place,
while the trapped wave depicts an antisymmetric profile
(Fig. 8). It is noticeable that, while the longitudinal |B|
profile smoothly decreases towards the positive = values,
a sharp front appears on the negative side, correspond-
ing to an asymmetry of the filament intensity along the z
axis. The transition between the non-focusing and focus-
ing dynamics probably occurs near e, = 0.44, for which
the simulation we have performed does not allow us to
decide about a possible collapse.
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FIG. 6. Variation of |B| and W in the longitudinal direc-
tion at 7 = 0 (a), and in the radial direction at the point of
the z axis where they are maximum (b), for €; = 0.56 and
Kez = —1.7x 1073,

|B]
20
15
10
5
0
-4 -2 0 2 4
w
20 I
0 x
-20
-40
-60
-80
-100
-12
120 -4 -2 0 2 4

FIG. 7. Variation of |B| and W in the longitudinal direc-
tion at r = 0, for ¢; = 0.11 and ke; = —1.5.
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FIG. 8. Same as Fig. 7, for €; = 0.11 and ke = 0.72.

VI. THE MECHANISM OF FOCUS INHIBITION

In this section, proceeding in the spirit of Ref. [11],
we analyze in the context of Egs. (4.10) and (4.11), how
sonic waves can in some instances inhibit the Alfvén wave
focusing. We assume that W is initially zero and that, for
a while, the B field develops a radial focus in independent
z planes of the form

|B|(z,r,t) = a(z)f (t(z) — 1)
xR{b(z) f(t«(z) — t)r},

where t, denotes the z-dependent singularity time, while
a(z) and b(z) are smooth and finite rescaling factors.
Up to logarithmic corrections, the function f(t.(z) —t)
behaves like [t,(z) — t]~1/2. Close to the singularity, the
variation in the z direction is thus strongly dominated
by the dependence on t,(x). Near the focusing, we are
thus led to write

(6.1)

|B|*(z,7,t) =~ G(t(x) — t,7) . (6.2)

Equation (4.11) is then solved along the characteristics
z(t) = — £t + 2o in the form

t

W (z(t),t) = l/ ox|B[z(r), 7)d , (6.3)
€1 Jo

where the r dependence has been omitted. Using Eq.

(6.2), we write

W) = - [ L), (6.4)
where K{1) = G(t.(z(7)) — 7} and u = t,(z(7)) — 7.
This leads to

t(z(r)) dK

1 t
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Integrating by part, we obtain

_t(=)

Wz, t)= — 2 —
@) = =)

t, (zo)

|BI?(z, t)

€1 2 0
MR
t g4 t, (=(r))
— | ——=—— | HdT . 6.6
AdT 1+ £t (z(1)) T (6.6)

The second term on the right-hand side of this equation
is negligible compared to the first one near the focusing.
The last one can be estimated using the intermediate
value theorem [since t}(z) is positive near the maximum
of the peak], as a term proportional to | B|?[z(6t), 6t] with
0 < 6 < 1. The nonlinear term in Eq. (4.10) then reduces
to

14 (c—1)&

(W +|B]*)B ~ “|B|>B (6.7)

RAC)
€1

since |B|?[x(0t),0t]B(z(t),t) is very small near the col-
lapse (provided 0 is not close to 1).

Equation (6.7) enables us to predict the effect of the
sonic wave when it begins to react on the magnetic field,
and to interpret the numerical results presented in Sec.
IV. When €; < ¢, we recover the adiabatic limit governed
by the sign of (¢ — 1)/c. Indeed, for ¢ < 1, defocusing
occurs, while for ¢ > 1, the collapse proceeds with W =
—|B|%. When c is of order ¢; (assumed to be small),
the situation is more complex. Recalling that ¢} (z) is
finite and negative (assuming c is positive), we see that
the nonlinear term has the sign of 1 + fl-ti(m), and thus
can be negative (defocusing case) if c is large enough
compared to €;, or positive (focusing case) otherwise. In
the latter case, the W profile is mainly dominated by
its antisymmetric component, as can be seen from Eq.
(6.6), where t!(z) is itself antisymmetric. Finally, for
€, very large (corresponding to almost purely transverse
perturbations), the wave W is antisymmetric and the
collapse is not arrested.

VII. CONCLUDING REMARKS

In this paper, we discussed the effect of slow longi-
tudinal modulations on the filamentation of a circularly

polarized Alfvén wave. This perturbation is singular due
to the existence of a mean flow driven by magnetosonic
waves, whose influence decreases with the scale of the
longitudinal perturbation. In the context of the linear
modulational stability analysis, it is shown that no fil-
amentation occurs for 8 < 1, suggesting that in super-
sonic and sub-Alfvénic regimes, Alfvén waves of moder-
ate amplitude propagating along the ambient magnetic
field, can survive and do not evolve into a much stronger
nonlinear regime. On the other hand, for 8 > 1, the
mean flow induces an instability confined in an angu-
lar boundary layer corresponding to quasitransverse per-
turbations. However, due to the coexistence of stability
and instability regions depending on the orientation of
the perturbation wave vector, an understanding of the
dynamics requires the resolution of the fully nonlinear
equations. Their numerical integration showed that mag-
netosonic waves can arrest the collapse when their scale
and/or their speed with respect to the Alfvén group ve-
locity, is not too large. Nevertheless, the dynamics gen-
erates sharp fronts for the sonic waves or density clump
shifted with respect to the peak Alfvén wave intensity.
In this situation, a significant amount of energy is trans-
ferred from Alfvén waves to localized density fluctuations
by a nondissipative mechanism. In contrast, when den-
sity fronts are produced, dissipation will occur at the
locations of the early time focus. This provides a new
mechanism for shock formation, different from the one
proposed in the context of the Cohen-Kulsrud-Burgers
equation discussed in Ref. [18], without referring to trans-
verse propagation effects [19]. The precise description of
this regime may require one to go back to the multidimen-
sional DNLS equations derived in Ref. [4], and possibly
to include nonlinearities in the sonic waves evolution [20].
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